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Abstract 
Precipitation is one of the fundamental elements that define global and regional climatology. 
Precipitation systems consist of a broad spectrum of three-dimensional structures in which 
microphysical processes interact with macro-scale processes in the cloud system and the ambient 
environment that prescribe the evolution of the system. Since 1970s, satellite observations of 
precipitation have been a fundamental tool in quantifying this complex interaction. They have 
first quantified the frequency and intensity of global precipitation, including remote areas over 
open oceans and polar regions, thus providing today’s precipitation climatology. More recently, 
satellite observations of cloud and precipitation have been exploited for understanding the 
physical mechanisms governing precipitation systems. A subset of these studies also provided 
observation-based metrics to probe physical processes operating in cloud-precipitation systems 
and to apply them as diagnostic measures for evaluating the representation of the processes in 
numerical models for better projections of future climate.  

In this chapter, we first review the theoretical basis of precipitation remote sensing from space 
and describe how it is practically applied in satellite missions. In the first part of the chapter, an 
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historical overview of the satellite missions is described, summarising the instruments and 
retrieval algorithms developed in the missions. In the second part, we introduce a set of studies 
discussing the fundamental mechanisms behind precipitation formation, highlighting what we 
have learnt to date on cloud-precipitation processes from satellite observations. 

1 Introduction 
Precipitation is condensed water (liquid and ice particles or their mixtures) that forms in clouds 
when cloud particles grow large enough to fall. Precipitating particles are distributed vertically in 
the atmosphere and fall typically as rain, snow, graupel or hail. As cloud growth and 
precipitation formation progress, they supply water to the surface, constituting a major 
component in the hydrological cycle. Precipitation also plays a fundamental role in the Earth’s 
energy budget. When solar energy is consumed to evaporate the surface water, energy is 
transported through the atmosphere as latent heat associated with water vapor. The latent heat is 
then released to warm the atmosphere via condensation and deposition processes, thus moving 
the energy from the surface to atmosphere.  
In precipitation formation, there are several paths for cloud particles to grow into precipitation. 
In warm clouds where clouds are entirely composed of liquid droplets, precipitation is formed 
through a microphysical process called warm-rain processes. During this process, the cloud 
droplets are formed by condensation of water vapour and become larger by swelling water 
vapour further until they reach a certain size (typically around 15-20 μm). Beyond this size, the 
process is replaced by collision and coalescence, where larger droplets grow by collecting 
surrounding smaller droplets. In cold clouds under subfreezing temperatures, cold-rain processes 
become the dominant precipitation mechanism. Whenever ice and liquid coexist, ice crystals 
grow rapidly at the expense of liquid droplets by the Wegener‐Bergeron‐Findeisen (WBF) 
process, where the liquid droplets evaporate and serve as a continuous source of water vapor to 
ice crystals due to the lower saturation vapour pressure of ice compared to that of liquid 
(Wegener, 1911; Bergeron, 1935; Findeisen, 1938). Other mechanisms for ice particle growth 
involve liquid-ice and ice-ice interactions, including riming where supercooled droplets freeze 
directly onto the crystal surface, and aggregation where crystal arms of multiple particles stick 
together to form one larger particle. Latent heat is released during most of these processes (e.g., 
vapor deposition and freezing of liquid to ice) and heats the surrounding atmosphere which 
invigorates convection and precipitation formation. Ultimately these ice crystals become large 
enough to fall as snow, or otherwise melt to form rain drops.  
What makes the precipitating cloud systems complex is the fact that these microphysical 
processes, typically occurring at the scale of micrometers to millimeters, underpin individual 
convective storms (of few kilometers in size) that interact with large-scale dynamics to generate 
larger systems such as mesoscale convective systems (MCS). Such a wide spectrum of scales 
with high temporal and spatial variabilities makes it challenging to quantify precipitation over 
the globe. For over a century, rain gauges have been providing detailed observations essential to 
characterising the surface precipitation. Later, satellite mission concepts were considered with 
the aim to understand global precipitation and its impact on climate given that the area covered 
by gauges is rather limited, equivalent to “less than half a football field” (Kidd et al., 2017). It 
was in the 1970s when Earth observation from satellites started. Thanks to subsequent 
measurement advances, our understanding of global precipitation has improved drastically, 
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particularly for its frequency and intensity across the globe, enabling better characterisation of 
precipitation climatology. Building upon these advances, a number of studies have been devoted 
to analysing multiple satellite measurements to examine not only precipitation itself but also its 
interactions with cloud, radiation and the ambient environment, in an attempt to reveal signals of 
precipitation-related processes behind the snap-shot observations. 
Generally speaking, the term “process” refers to a mechanism responsible for a temporal change 
in physical states. With regards to precipitation, the relevant processes include microphysical and 
thermodynamical changes of hydrometeors themselves (e.g., particle evolutions, phase changes 
and the resultant radiative changes), as well as dynamical changes in the cloud system (e.g., 
latent heat impact on storm invigoration). These “internal” processes interact with “external” 
factors including aerosols (e.g., aerosol seeding of cloud droplets or crystals, precipitation 
removal of aerosols, aerosol impacts on precipitation, and radiative forcing associated with them) 
and further interact on broader factors related to land-surface and cryospheric processes, the 
water cycle and the radiation budget of the Earth. The search for a deeper understanding of these 
physical processes governing precipitation have leveraged studies linking individual 
measurement data to diagnostics of the related processes underpinning the observed precipitation 
beyond scrutinizing precipitation climatology, the evolution of these processes in a warming 
climate, and better representation of the processes in numerical models (Stephens et al., 2018). 

In this chapter, an overview of the progress in satellite precipitation measurement is addressed, 
with a particular focus on outlining the insights into precipitation-related processes obtained 
from recent studies. Section 2 reviews the fundamental principles of precipitation measurement 
in satellite remote sensing. The historical overview of satellite precipitation measurement and 
their retrieval algorithms are described in Section 3. Selected examples of observation-based 
analysis of cloud-precipitation processes are then highlighted in Section 4. Future satellite 
missions planned for precipitation measurement to further advance cloud-precipitation science is 
discussed in Section 5. Note that the chapter highlights recent advances in cloud-precipitation 
processes rather than on water vapor processes, although some aspects of water vapor in 
convective processes are touched upon. Finally, the chapter is summarized in Section 6.  

2 Satellite Remote Sensing of Precipitation – Physical Basis 
Hydrometeors emit, absorb and scatter radiative energy and precipitation remote sensing seeks to 
convert the radiative energy received by a satellite-borne radar or radiometer to water flux at the 
surface. Therefore, the physical basis of retrieving precipitation involves two fundamental 
relations, i.e., (1) how hydrometeors interact with radiation, which is often determined by their 
size, shape and single-scattering properties and (2) how microphysical properties distributed in 
the vertical column relate to surface water flux, which depends on the vertical variability of 
natural precipitating clouds. For radars, the second relation is less of an issue since radar 
reflectivity can be determined in individual atmospheric layers. However, in the case of passive 
remote sensing by radiometers, the vertical distribution of hydrometeors plays a critical role in 
determining satellite observed radiative energy. Thus, early SSMI-era retrieval methods relied on 
statistical relations between hydrometers aloft and precipitation rate at the surface (Grody, 1991). 
For passive remote sensing, satellite received radiances come from either reflected sunlight or 
thermal emission by targets in the sensor’s field of view. Precipitating clouds are opaque in the 
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visible and infrared spectrum and precipitation estimations in these spectral ranges are chiefly 
related to the cloud top structure, relying on the second relation mentioned above. The general 
assumption is that the more reflective or the taller the cloud top is, the more intense the 
precipitation will be at the surface. In the microwave (including millimeter wave) spectrum, 
however, the satellite received radiation is a result of scattering/emission of the surface emission 
as it interacts with all hydrometeors and constituent gases throughout the entire atmospheric 
column, and the absorption and scattering by hydrometeors dictate the upwelling radiative 
energy. Using the frequency of 166 GHz, which is used in Global Precipitation Measurement 
mission microwave imager, as an example, the absorption and scattering properties of several 
types of hydrometeors in this wave spectrum are shown in Fig. 1. Because radiation at higher 
frequencies is more sensitive to ice scattering, the 166 GHz is used here to make a clear contrast 
among the scattering properties by different types of hydrometeors. In this figure, raindrops and 
hail are assumed to be spheres with density of 1.0 and 0.8 g/cm3, respectively, while dendrite 
crystals and aggregates are taken from ice scattering database of Liu (2008) and Nowell et al. 
(2013). First of all, absorption by ice particles is about 2 orders of magnitude weaker than that by 
liquid drops, which gives rise to little emission by ice particles in the microwave spectrum. 
Second, given the same liquid-equivalent radius (or mass), the scattering intensity depends 
strongly on particle shape, which dramatically complicates the retrieval problem because of the 
large variety of ice particle shapes in natural clouds.  

Due to the relative transparency of the atmosphere in the microwave spectrum, surface 
emissivity is another impacting factor on upwelling radiation. Emissivity over ocean is polarized 
with a magnitude lower than unity, and fairly well modeled except at high wind conditions (Kilic 
et al., 2019), while over land it is high (close to 1) and highly variable. As explained above, 
passive microwave precipitation remote sensing relies on emission and scattering signatures 

Figure 1. Scattering and absorption at 166 GHz for raindrop, hail, dendrite crystal and ice 
aggregate. Qs and Qa are defined by the scattering and absorption cross-sections divided by 
cross-section area of a liquid-equivalent drop. 
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from hydrometeors. Generally speaking, the emission signature is generated from liquid drops 
that enhances upwelling radiances over ocean at low frequencies (e.g., <80 GHz) and is less of 
an influence over most land surfaces because of the near 0.9 surface emissivity. On the other 
hand, the scattering signature is generated by ice particles and only strong enough at high 
frequencies, although it can be observed over both land and ocean. Therefore, precipitation 
retrieval by passive microwave observations is based on the assumption that a greater amount of 
liquid or ice water in the atmospheric column leads to heavier precipitation at surface. Although 
this relation is more direct than the cloud top–precipitation relation assumed for visible and 
infrared remote sensing, it is still a large source of error, especially for the ice–precipitation 
relation assumed for scattering signatures. 

For active remote sensing by radars, the observed signature is the backscattered energy by 
hydrometeors in a finite volume (namely, radar reflectivity). The relation between radar 
reflectivity and precipitation rate depends strongly on the particle size distribution. The satellite 
dual-frequency radar measurements (introduced in Section 3) are introduced to minimize this 
uncertainty, in which one frequency operates in the Rayleigh and the other operates in the non-
Rayleigh regime. Assuming that the particle size distribution can be expressed by a two-
parameter function – e.g., mean diameter and total particle number – the precipitation rate can 
then be uniquely determined by the two radar reflectivity values. As in passive remote sensing, 
additional complication arises for retrieving solid precipitation (i.e. snowfall), in which ice 
particles are nonspherical with a large variety of shapes, and often have preferred orientations.  

In the next section, we introduce how these theoretical characteristics of precipitation remote 
sensing are practically applied in the precipitation measurement from space. 

3 Historical Overview of Satellite Precipitation Remote Sensing 

3.1 Passive Remote Sensing 
Building upon the principles explained above, satellite precipitation remote sensing has 
essentially two pillars of observation techniques: active remote sensing by microwave radars and 
passive remote sensing by microwave radiometers. Passive microwave instrumentation had 
undergone multiple generational upgrades since the earliest single-frequency imager was used 
for precipitation remote sensing in the 1970’s (Wilheit, 1972); current satellite microwave 
imagers in operation cover frequencies from 6 to 183 GHz and make measurements at both 
horizontal and vertical polarizations (Aonashi & Ferraro, 2020), among which the following 
sensors are worth mentioning. First, the Special Sensor Microwave Imager (SSM/I) was a 
conically scanning radiometer operating at frequencies near 19, 22, 37, and 85.5 GHz with dual 
polarizations at all but the 22 GHz channel (Hollinger et al., 1987). With its multispectral 
coverage and stable calibration, the SSM/I is often considered to mark the start of the modern era 
for microwave radiometry for precipitation (Kummerow, 2020); most currently operational 
radiometers can find their roots from SSM/I’s. For example, the Tropical Rainfall Measuring 
Mission (TRMM) Microwave Imager (TMI) operated at channels similar to SSM/I, only with 
added channels at a lower frequency of 10.7 GHz, and the Advanced Microwave Scanning 
Radiometer (AMSR) series further adds channels near 7 GHz, primarily for ocean surface 
parameter retrievals. The Special Sensor Microwave Imager/Sounder (SSMIS) continues the 
legacy of SSM/I, but consolidates channels previously covered by two other sounding sensors on 
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the Defense Meteorological Satellite Program (DMSP) satellites to include channels near 60-
GHz oxygen and 183-GHz water vapor absorption frequencies and at a 150-GHz window 
frequency. Likewise, the Global Precipitation Measurement (GPM) mission microwave imager 
(GMI) continues the legacy of TMI but includes observations at higher frequencies of 166 and 
183 GHz mainly for snowfall estimation. Most modern era microwave radiometer precipitation 
algorithms have their origins in concepts developed earlier with SSM/I observations. 

Satellite microwave radiometer received energy (as expressed by equivalent blackbody 
brightness temperature, or TB) is an integral of the emission, absorption and scattering from the 
surface, atmospheric gases and hydrometeors. Because of the complexity involved in the 
combinations of these geophysical variables, any given set of observed brightness temperatures 
could correspond to a number of precipitation rates. In other words, the retrieval problem is ill-
conditioned with multiple solutions from a single input. To obtain a reasonable solution, retrieval 
algorithms must set some constraints to reduce the range within which the solution is to be 
searched. In the following, we briefly describe how satellite algorithms retrieve precipitation 
rates, by taking the GPM’s Goddard Profiling (GPROF) algorithm (Kummerow et al., 2015) as 
an example. The GPROF algorithm retrieves precipitation using the Bayes’ theorem with an a 
priori database linking hydrometeor profiles and brightness temperatures. Estimation is 
computed by a weighted average of precipitation rates for those profiles that are radiometrically 
consistent with observations, and the weights are determined by the distance between observed 
and database brightness temperature vectors. The key component of the algorithm is the a priori 
database in which the hydrometeor profiles need to be representative to those occurring in 
nature. The most current version uses hydrometeor profiles retrieved from the GPM radar-
radiometer combined algorithm (Grecu et al., 2016) and their associated brightness temperatures 
are computed by radiative transfer simulations. To constrain the algorithm solution by the 
associated environmental conditions, ancillary data of surface class, 2-m temperature and 
precipitable water are introduced to subset the database, so that solutions can only be found in a 
specified portion within the database.  
With the advantage of frequent sampling, visible and infrared measurements, particularly from 
geostationary satellites, have also played an important role in precipitation retrieval. The imaging 
spectroradiometers onboard these platforms have gradually evolved in spectral, spatial and 
temporal resolution. For example, the Advanced Baseline Imager (ABI) on the GOES-R Series 
and the Advanced Himawari Imager (AHI) on the Himawari-8 satellites can produce a full disk 
image every 10 to 15 minutes with 0.5 to 2 km spatial resolution; both instruments have 16 
channels covering 0.455 to 13.3 µm wavelength. Due to the physical indirectness to surface 
precipitation, visible/infrared retrieval algorithms are prone to large errors. To compensate for 
this shortcoming, techniques have been introduced to estimate precipitation total over a long time 
and a large area, e.g., the GOES Precipitation Index (GPI, Arkin & Meisner, 1987). On the other 
hand, efforts for instantaneous precipitation retrieval have been made by classifying clouds using 
horizontal texture, cloud-patch identification and multi-spectral information (Adler & Negri, 
1988; Ba & Gruber, 2001; Bellerby, 2004; Hong et al., 2004; Behrangi et al., 2009). Taking the 
advantage of frequent sampling by infrared measurements and the physical directness of 
microwave measurements, some great successes have been reported recently by combining the 
two, in which microwave retrievals are used to calibrate the infrared algorithm while infrared 
measurements are used to enhance spatial and temporal coverages of precipitation estimates 
(Joyce & Xie, 2011; Huffman et al., 2007; Hsu & Sorooshian, 2009; Ushio et al., 2009). 
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3.2 Active Remote Sensing 
Radars represent the other pillar of precipitating cloud remote sensing, as demonstrated by the 
continuous operation record of the three major atmospheric radar missions in the past 22 years: 
the Tropical Rainfall Measuring Mission (TRMM), CloudSat and the Global Precipitation 
Measurement (GPM) mission. Figure 2 illustrates the timeline of the launch and operational 
period of the missions. The launch (November 1997) of the TRMM Ku-band (13.6 GHz) 
Precipitation Radar (PR), part of a joint mission between the National Aeronautics and Space 
Administration (NASA) and the Japanese Aerospace Exploration Agency (JAXA), spearheaded 
a new era of space-borne atmospheric radar missions (Kummerow et al., 2000). The TRMM PR 
was the first weather radar in space providing unprecedented three-dimensional structure of 
storm systems (Okamoto, 2003; Houze Jr. et al., 2015), mapping precipitation over a swath of 
more than 215 km with a 250m-vertical resolution. The TRMM PR was followed (in April 2006) 
by the NASA CloudSat W-band (94 GHz) Cloud Profiling Radar (Tanelli et al., 2008) as part of 
the A-Train, a constellation of active and passive instruments in a sun-synchronous orbit with 
ascending equatorial crossing around 1:30 PM local solar time. Thanks to its superior sensitivity 
and its synergy with other instruments in the A-Train (Stephens et al., 2018), the CloudSat CPR 
has provided the first ever collection of global vertical profile observations not only of clouds but 
also of light rain and snow (Lebsock et al., 2020). The global precipitation record begun by 
TRMM was continued with the launch (February 2014) of the GPM-core observatory 
(Skofronick-Jackson et al., 2018). The GPM Dual-frequency Precipitation Radar (DPR), the first 
of its kind to be flown in space with the Ku-band (13.6 GHz) and Ka-band (35.5 GHz) radars 
(Iguchi, 2020), expands the capability of the TRMM PR in terms of coverage of high latitudes 
and improved sensitivity, thus enabling detection of lighter precipitation and snow (Kidd et al., 
2020). 
The diverse capabilities of these different radar systems, spanning frequencies from Ku to W 
band, are demonstrated in the GPM and CloudSat coincident observations of a precipitation 
system over the Gulf of Thailand (top panels of Fig. 2). The CloudSat CPR depicts a cloud 
system extending up to 15 km, including three precipitating clusters with a melting layer at about 
5 km and an upper cirrus cloud anvil. The CPR signal is attenuated in the rain region below the 
melting layer and decreases below the noise level in correspondence to the first rain cell at 
around 80 km along-track distance. As an indication of the attenuation of the signal the path 
integrated attenuation (PIA) derived from the surface reference technique (Meneghini et al., 
2015) is overplotted as a black line on all reflectivity panels in Fig. 2. The GPM DPR misses 
most of the ice cloud but can easily penetrate the rain layer, with different levels of attenuation 
for the two frequencies (rain attenuation at Ka is approximately from 2 to 6 times larger than at 
Ku, compare the values corresponding to the black lines in the top two panels on the left). Note 
also the better sensitivity of the Ku against the matched scan Ka. Despite the lower sensitivity, it 
must be kept in mind that the DPR, with its 245-km swath, does provide a full 3D view of the 
storm and not simply a curtain through it like the CPR. This case study epitomizes the 
complementarity of these systems (Battaglia et al, 2020a). Luo et al. (2017) exploited the TRMM 
and CloudSat matchups (with the co-located measurements of Cloud‐Aerosol Lidar and Infrared 
Pathfinder Observation, CALIPSO) to study tropical cloud and precipitation regimes and their 
internal vertical structures. Berg et al. (2010) combined the TRMM-PR and the CloudSat CPR, 
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best positioned to detect and quantify the high/medium and drizzle/light rain respectively, to 
provide the best estimates of the total rain volume in the Tropical Oceans. 

Reflectivity profiles like those shown in Fig. 2 are used to derive microphysical profiles of 
hydrometeors. A list and details of  TRMM, CloudSat and GPM products can be found at 
https://gpm.nasa.gov/data/directory, www.cloudsat.cira.colostate.edu/data-products and  
https://gportal.jaxa.jp/gpr/, respectively. There are three fundamental issues when converting the 
measured radar range-resolved quantities into precipitation profiles: 

1) ambiguities in the effective radar reflectivity factors versus precipitation rates conversion
which are related to the natural variability of the particle size distribution and, for solid
precipitation, of the particle shapes and densities;

Figure 2. Timeline of active cloud and precipitation radar missions with, above, cartoons of 
the TRMM PR scanning pattern, the CloudSat CPR A-Train constellation formation and the 
GPM core satellite (credit NASA and JAXA). The top three panels provide an example of 
the current space-borne cloud and precipitation radar capabilities with almost coincident 
vertical profile reflectivities of the GPM Ku (left panel), the GPM Ka (center panel) and the 
CloudSat W-band (right panel) corresponding  to a precipitating systems observed on 4 June 
2014. The over plotted black lines (with scaling factors as indicated in the y-labels) indicate 
the path integrated attenuation as derived from surface reference techniques. The case study 
is from the GPM product 2B-CSATGPM. 

GPM/DPR  [NICT-JAXA]
Ku-/Ka-band

CloudSat/CPR [NASA-JPL/CSA]
W-band

1998 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020

GPM: 2014-present
TRMM: 1997-2015 CloudSat: 2006-present
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2) the attenuation correction required to derive the effective radar reflectivity factors from
the measured reflectivity factors. Rain attenuation is increasingly important with
increasing frequency and precipitation rate; graupel and snow may produce non-
negligible attenuation already at Ka and W bands (Lhermitte, 1990);

3) non-uniform beam filling (Nakamura, 1991) and multiple-scattering effects (Battaglia et
al., 2010) that are more pronounced in the presence of large footprints and strongly
attenuating media.

The first issue is generally addressed by adopting a-priori assumptions on the particle size 
distribution shape [e.g., for rain in TRMM and GPM algorithms (Iguchi & Haddad, 2020) or for 
snow in the CloudSat 2C-snow algorithm (Wood & L’Ecuyer, 2013)]; caution must be taken 
because such assumptions depend on precipitation regimes and may show regional biases (e.g., 
Protat et al., 2019). In fact, dual- and multi-frequency observations have been proposed for 
mitigating such uncertainties (Iguchi & Haddad, 2020; Battaglia et al., 2020b).  The second 
issue, attenuation correction, is an essential step in all retrieval algorithms and is performed 
either via analytical solutions (Seto & Iguchi, 2015) or via optimal estimation-based iterative 
processes (L’Ecuyer & Stephens, 2002). Because errors in all of these techniques are 
accumulated recursively with increasing range (Hitschfeld & Bordan, 1954), additional 
constraints, such as the path integrated attenuation (PIA) estimated from the surface reference 
technique (Meneghini et al., 2015), are usually exploited in order to stabilize the retrieval. 
Finally, non-uniform beam filling corrections have been accounted for in TRMM and DPR 
algorithms (Seto et al., 2015) whereas multiple scattering is intrinsically accounted for when 
adopting appropriate forward models (e.g., Hogan & Battaglia, 2008) as in CloudSat rain 
products. However, there are instances associated with extreme events where the two effects 
occur simultaneously (Mroz et al., 2018); tackling both remains challenging and is topic of 
current research.  
Despite the above issues, these radar measurements have mapped for the first time the global 
vertical distributions of clouds and precipitation. What is noteworthy is that the precipitation 
radars not only identified precipitation itself, but also gave observational insights into latent 
heating in the tropical atmosphere, including its diurnal, intraseasonal, seasonal, and annual 
variability, as well as its role in tropical and extratropical circulations (Simpson et al., 1988). 
One of the science drivers of the missions was the improvement of climate modeling and 
prediction, and the provision of precipitation microphysics and latent heat release were viewed as 
being needed to improve Earth system models (Hou et al., 2014). Studies have used the latent 
heating products to examine the response of atmospheric circulation to heating (Schumacher et 
al., 2004; Huaman & Schumacher, 2019; Mathew & Kumar, 2019), to describe the MJO (Barnes 
et al., 2015; Vincent & Lane, 2018; Chang & L’Ecuyer, 2019), and to characterize the 
contributions to latent heating of precipitation systems with different sizes, depths, and 
intensities (Liu et al., 2015). 

Further, a number of recent studies employed the combinations of radar/radiometers to 
characterize the properties of hailstorms in an attempt to develop hail climatologies. For 
example, Marra et al. (2017) identified DPR and GMI properties for a severe hailstorm over Italy 
and placed it in the context of two years of GPM data. Mroz et al. (2018) examined the vertical 
structure of more than 800 hailstorms using DPR and noted particular features of Ka-band 
reflectivity profiles associated with hail, including multiple scattering and non-uniform beam 
filling. Bang and Cecil (2019) used 16 years of TRMM data to pair TMI brightness temperatures 
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with surface hail reports and apply those relationships to GMI data to construct a near-global 
climatology of hail.  

The precipitation measurements by these active radars and passive radiometers better shaped the 
distribution and properties of global precipitation. In light of this, more efforts were made in later 
years to understand coupled cloud-precipitation processes from the measurements and propose 
observation-based metrics in evaluating the representation of those processes in numerical 
models. The next section introduces examples of such process studies, attempting to reveal the 
mechanisms behind the precipitation phenomena identified. 

4 Understanding Cloud-Precipitation Processes 
Cloud-precipitation processes are central to the fundamental question with regard to atmospheric 
water: How does precipitation form from clouds? As should be obvious from this question, 
precipitation formation accompanies consecutive changes in physical properties of cloud and 
precipitating particles, and as such, there has been emerging recognition in the importance of 
analysing both cloud and precipitation measurement simultaneously, rather than investigating 
cloud and precipitation formed separately. The following sections introduce selected example 
studies that analysed active and passive measurements synergistically in an attempt to address 
this fundamental science question.  

4.1 Warm Rain Processes 
The unique capability of CloudSat CPR to vertically profile the cloud and light precipitation 
offered a novel opportunity to study rain formation processes, particularly when combined with 
passive measurements of clouds included in A-Train. Early studies that exploited the 
simultaneous measurement of cloud and light precipitation (e.g., Leon et al., 2008; Kubar et al., 
2009; Wood et al., 2009) investigated how CloudSat-observed radar reflectivity relates to 
MODIS-derived cloud properties such as cloud-top particle size, cloud optical depth and liquid 
water path to find that the radar reflectivity systematically varies with these cloud properties. The 
light precipitation measurement by CloudSat was also combined with aerosol information 
obtained from MODIS to assess how rain formation tends to be suppressed by increasing 
aerosols (Lebsock et al., 2008; L’Ecuyer et al., 2009; Wang et al., 2012). Specifically, these 
studies investigated probability of precipitation (POP) quantified by light precipitation 
measurement of CloudSat as a function of liquid water path (LWP) from MODIS or AMSR-E 
for differing conditions of aerosol turbidity also characterized by MODIS. Aerosol impacts on 
precipitation were then assessed by analyzing how POP tends to increase with increasing LWP at 
a rate that differs depending on aerosol turbidity (measured by aerosol optical depth or aerosol 
index). The global statistics thus constructed depicted the aerosol impacts on the warm rain 
formation process. Wang et al. (2012) further extended this analysis to introduce the sensitivity 
or “susceptibility” of POP to perturbed aerosols, denoted by Spop as an analog to the precipitation 
susceptibility Sp (Sorooshian et al., 2009), and showed that global models tend to overestimate 
Spop relative to satellite observations, implying a too pronounced response of the cloud-
precipitation system to perturbed aerosols in climate models. 
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The vertical profiling capability of CloudSat CPR was further exploited by some studies (e.g., 
Nakajima et al., 2010; Suzuki et al., 2010) to explore cloud-to-precipitation processes. These 
studies constructed particular statistics of CloudSat radar profiles rescaled by cloud optical depth 
and classified according to cloud-top particle size obtained from MODIS to observationally 
“fingerprint” the cloud-to-precipitation processes. The statistics illustrated how vertical 
microphysical structures vary systematically from non-precipitating to precipitating 
characteristics as a fairly monotonic function of the cloud-top particle size, and such a 
microphysical signature found in the statistics was interpreted in the context of drop collection 
process. 

In light of such fingerprints from the analysis, subsequent studies have used these results to 
assess the credibility of cloud-precipitation processes in numerical models (such as climate 
models and cloud-resolving models). As in other satellite-based model evaluations, these studies 
employed satellite simulators that translate model geophysical parameters into satellite-observed 
radiances/backscatters (Haynes et al. 2007; Voors et al. 2007; Masunaga et al. 2010; Bodas-
Salcedo et al. 2011; Hashino et al. 2013). As seen in Section 3, each observation sensor has its 
own sensitivity/attenuation characteristics, as well as spatial and temporal resolutions. 
Consequently, comparing satellite measurements to model simulations requires these satellite 
characteristics to be taken into account, rather than comparing satellite measurements directly to 
native model outputs. These satellite simulator frameworks provide what a satellite would have 
measured if it flew over the modeled atmosphere. This reduces the ambiguities attributed to 
satellite measurement characteristics, enabling a more consistent “scale-aware and definition-
aware” evaluations (Kay et al. 2018).  
Model evaluations in this manner exposed that state-of-the-art global models, including cloud-
resolving models and climate models, share a common propensity to produce rain even when the 
clouds consist of small droplets (Suzuki et al., 2011, 2015; Jing et al., 2017), as a key cause of 
the “too-light, too-frequent” precipitation bias in global models identified against satellite 
observations (Dai, 2006; Stephens et al., 2010). The model-satellite comparisons also offered a 
process-based constraint on key uncertainties of climate models that have typically been 
regarded as “tunable knobs”. A threshold cloud particle size that triggers rain formation is one 
particular example for such a tuning parameter in climate models (Golaz et al., 2013). It is shown 
that the model assumption on this parameter that best represents the satellite-observed rain 
statistics leads to a historical temperature trend that provides the worst match to the observed 
trend and vice versa (Suzuki et al., 2013). This “dichotomy” between the process-based 
constraint and the top-down energy balance requirement is caused by the radiative forcing due to 
aerosol-cloud interaction that is too large and negative such that it cancels much of the global 
warming in 20th century, as a result of pronounced cloud responses to aerosols enhanced by wet-
scavenging of aerosols (Jing & Suzuki, 2018; Jing et al., 2019). This underscores a critical need 
for better modeling the aerosol-cloud-precipitation coupling. 
These studies imply the presence of error compensations in modern climate models, which need 
to be mitigated for enhancing model reliability of climate projections. The process-based 
analysis of satellite observations such as those described above also can serve as a guide to 
improve the models at a fundamental process level. Recently, Michibata and Suzuki (2020) 
demonstrated that a sophisticated prognostic precipitation parameterization in a climate model 
can reconcile the error compensation described above to simultaneously represent both rain 
processes consistent with satellite observations and reasonable magnitudes of radiative forcing 
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due to aerosol-cloud interaction (Fig. 3). This highlights how satellite measurement of warm-rain 
process can be exploited to advance climate modeling (Stephens et al., 2019b) and underscores 
that such a process-oriented effort in combining models and satellite observations should be 
extended to understanding of the cold-rain processes, which is another source of uncertainty in 
climate projections. 

4.2 Mixed-phase Cloud and Snowfall Processes 
Mixed phase clouds are ubiquitous globally in temperature conditions between 0 ºC and –40 ºC. 
Commonly found in the Southern Ocean and Arctic are ice clouds with thin supercooled liquids 
at the cloud-top and snow falling out near the ground (Shupe, 2011, Morison et al. 2012). This 
three-layered structure has been observed using CloudSat-CPR with the CALIPSO’s scattering 
lidar, Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP). The constellation formation 
of the CloudSat and CALIPSO captures the cloud-precipitation structure almost simultaneously, 
where the CALIPSO lidar observes the liquid layer at the top and the CloudSat radar observes 
the ice cloud and snowfall underneath (Huang et al. 2012; Forbes & Ahlgrimm, 2014). 
According to ground-based observations, the structure often persists for several days (Shupe, 
2011), which is relatively unexpected given that the coexistence of liquid and ice is 
microphysically unstable. Whenever ice and liquid water exist in subfreezing temperatures, the 
WBF process enhances the evaporation of liquid droplets into water vapour, which are then 
condensed onto ice, meaning the process supports ice growth at the expense of neighboring 
liquid droplets (c.f. Section 1). As such, the microphysical instability can transit mixed-phase 
clouds into all-iced clouds in a short period of time and the persistence of these clouds for 
several days is quite surprising. Still, the supercooled liquid layer lasts, suggesting a strong liquid 

Figure 3. (left) Statistical representations of radar reflectivity profile as a function of in-
cloud optical depth (ICOD) classified according to cloud-top particle size (Re) from (top) A-
Train, (middle) MIROC6 old version and (bottom) MIROC6 new version. (right) Effective 
radiative forcing due to aerosol-cloud interaction estimated by satellite and two versions of 
MIROC6. (Cited from Michibata & Suzuki, 2020.) 



13 

condensation at the cloud-top with continuous supply of water vapour that balance continuous 
liquid mass-loss by ice growth and precipitation. Although not fully understood, the preserving 
processes involves cloud-scale upward air motion (acting to increase relative humidity), radiative 
cooling at the cloud top (acting to decrease the static stability and thus driving turbulence) and 
large-scale advection of water vapor near the cloud top (Morrison et al. 2012).  
The complexity of mixed-phase clouds in association with local processes as exemplified above 
gives rise to fundamental challenges for representing them in global climate and weather 
prediction models. In particular, it has been recognised as a longstanding mixed-phase cloud 
problem within the climate modelling community that models tend to underestimate supercooled 
liquid clouds over the Southern Ocean and (to a lesser extent) in the Arctic (Trenberth & Fasullo 
2010; Bodas-Salcedo et al. 2012; 2014; 2016; Kay et al., 2016; Kawai et al. 2019). In general, 
for a given cloud water content, cloud liquid droplets are much smaller than cloud ice crystals, 
which leads liquid clouds to become optically thicker and reflect more solar radiation than ice 
clouds (Cesana & Storelvmo, 2017). As such, the lack of supercooled water over the regions 
induces the models to absorb excessive solar radiation and overestimate sea surface temperature 
(SST). For example, McIlhattan et al. (2017) found the insufficient liquid in Arctic clouds in the 
climate model of the Community Earth System Model Large Ensemble (CESM-LE), and, in 
turn, generates too much snowfall than what CloudSat precipitation measurements suggested. 
They speculated that the WBF process in the model was progressing too fast, contributing in part 
to scavenging the liquid clouds too efficiently. Recognising the substantial impacts on cloud-
precipitation-ocean-radiation processes (Kay et al. 2016), a number of studies in recent years 
worked on reducing the supercooled liquid deficit by adjusting phase partitioning of clouds in the 
model, essentially slowing cloud freezing processes and sustaining more liquids in clouds (e.g., 
Forbes et al. 2016).  

The changes in the phase partitioning subsequently exert profound impact ib future climate 
projections since the melting of cloud ice to liquid in a warming climate increases cloud albedo 
and thereby induces a negative cloud-phase feedback onto the climate (Storelvmo et al. 2015). 
Tan et al. (2016) illustrated this using the National Center for Atmospheric Research’s 
Community Atmosphere Model (CAM) model by adjusting cloud phase partitioning in the 
models to what satellite observations implied. They found that the adjustment decreased cloud 
glaciation rate in a warmer climate that weakened the negative feedback and induced higher 
climate sensitivity. The follow-up work by Tan and Storelvmo (2019) interestingly explained the 
contradicting effects of the cloud phase change on the faster warming of the Arctic compared to 
the rest of the globe – commonly referred to as the “Arctic amplification”. They showed that the 
cloud phase change during a warming atmosphere initially reduces the warming by the negative 
cloud-phase feedback, but at the same time could ultimately enhance the Arctic amplification by 
increase in downward longwave radiation trapped by the prolonged clouds as a result of the 
smaller liquid droplets (than ice clouds) that produce less precipitation.  

The studies above underscored the importance of realistic representation of mixed-phase cloud-
to-precipitation processes in the models. Some studies compared the models against CloudSat 
measurements to find that the models generally produce snowfall too frequently (Palerme et al. 
2017; Kay et al. 2018). In an attempt to mitigate this bias, Rietter et al. (2011) introduced a 
prognostic precipitation scheme that interacts with cloud and ambient environment during 
sedimentation, instead of the conventional diagnostic scheme with no such interaction. Since 
snow falls out instantaneously in the diagnostic scheme, the authors found considerable 
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underestimates of the large ice water content (IWC) compared to CloudSat, while the prognostic 
scheme resulted in overestimates of IWC with the excess ice clouds remained in the atmosphere 
due to the insufficient snow fall speed, as also suggested by comparison with CloudSat. More 
recently, Michibata et al. (2019) also introduced a prognostic precipitation scheme in another 
climate model to achieve better agreement with CloudSat/CALIPSO in total cloud ice content 
and showed a substantial radiative impact by falling snow of 6.4 W/m2 in longwave and 5.1 
W/m2 in shortwave. 
The mixed-phase clouds and ice precipitation also have profound influences on the polar ice 
sheet through radiation and snowfall. This is particularly important in the context of evolving 
mass budget of the Arctic ice sheet with its substantial impact on sea level rise. Boening et al. 
(2012) used the CloudSat snowfall observations (with the ERA Interiam reanalysis) and showed 
the significant mass increase during 2009–2011 observed by satellite gravitational measurements 
of Gravity Recovery and Climate Experiment (GRACE) was caused by extreme precipitation 
events during the austral winter. Palerme et al. (2017) showed that the models in the Fifth 
Climate Model Intercomparison Project (CMIP5) archive generally predict increases in the 
Antarctic precipitation (from 5.5% to 24.5%) between the periods 1986–2005 and 2080–2099, 
with the subset models in agreement with CloudSat snowfall (within 20% of error) estimating 
larger increases (from 7.4% to 29.3%) implying larger impacts on sea level rise. This 
underscores a critical role of satellite precipitation measurement in evaluating the processes 
controlling sensitive balance between the snowfall accumulation and glacial discharge, and their 
impact on sea level rise in a warming climate. Despite these attempts, process-level 
understandings of mixed-phase precipitation have generally not yet advanced as much as of 
warm-rain processes due to the microphysical complexity of ice and snow hydrometeors. This 
called for ice and mixed-phase processes to be one of the major scientific questions in future 
missions as highlighted in Section 5.   

4.3 Latent Heat and Convective Processes 
The latent heat released during precipitation formation is a fundamental factor in atmospheric 
circulation and convective storm evolution. Stephens et al. (2019a) emphasizes analyzing 
simultaneous measurements of cloud and precipitation with a focus on the radiative and latent 
heating characteristics related to different cloud-precipitation vertical structures. They employed 
CloudSat cloud and precipitation observations combined with GPM precipitation, CALIPSO 
lidar and MODIS radiance data to investigate the cloud properties of precipitation. They 
considered two cloud-top height (CTH) parameters, the maximum or highest CTH (designated 
HCTH), typical of what might be inferred from radiometric observations, and the lowest CTH of 
the raining column (designated RCTH) derived from an active instrument capable of detecting 
overlapping cloud layers. Not too surprisingly, they found that HCTH, indicative of the deepest 
raining clouds in the tropics, was a poor indicator of rainfall intensity and led to misclassification 
of rainfall associated with shallower cloud systems overtopped by higher clouds. For HCTH, 
precipitation was associated with a bimodal distribution of CTHs, with rain appearing to occur 
primarily with deeper convective cloud systems and shallow, primarily subtropical clouds. For 
RCTH, the proportion of rainfall from deeper systems was reduced, while rainfall from shallow 
and congestus systems increased, with the CTH distribution exhibiting more of a trimodal nature 
of shallow, midlevel, and deep systems.  
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Using a clustering methodology, they identified three main modes of organization: a deep, 
optically thick mode associated with deep convection; a deep, optically thin (designated 
“mixed”) mode; and a shallow mode representing shallow convection and stratiform 
precipitation. The mixed mode consisted of shallow to deep precipitating clouds underneath high 
clouds for the HCTH distribution and deep, but optically thinner clouds for RCTH. Stephens et 
al. (2019a) showed that for the RCTH distribution, the shallow/mixed/deep modes made the 
largest/middle/least contributions to light rainfall (<1 mm hr-1), with the reverse true for heavy 
(>10 mm h-1) rainfall. They also related these cloud modes to latent heating rate profiles (Fig. 4) 
derived from the approach of Schumacher et al. (2004). Averaged heating rates (Fig. 4a, 
conditioned on when precipitation occurs) were similar for the HCTH and RCTH datasets. 
Latent heating rates for deep systems exhibited a top-heavy profile typical of deep convective 
systems (convective and stratiform regions). The mixed mode had a similar shape, but with 
smaller heating/cooling rates, while the shallow mode was characterized by heating up to 7.5 km 
altitude. When weighted by the frequency of occurrence of the different modes (Fig. 4b), the 
heating rates exhibited more sensitivity to the measure of CTH, with slightly reduced deep-mode 
heating and substantially reduced mixed-mode heating aloft and increased shallow heating at 
lower-to-middle levels. Thus, the shallow mode plays a greater role when the more realistic 
treatment of CTH is used, with the shallow heating largely cancelling the cooling from the deep 
and mixed modes at low levels.  

Huaman and Schumacher (2018) examined the relationship between the distribution of latent 
heating in the Eastern Pacific intertropical convergence zone (ITCZ) and the meridional 

Figure 4. (a) The conditional profile latent heating averaged over the tropics when 
precipitation occurs. (b) The equivalent profiles weighted by the occurrence of each k-means 
cloud regime, interpreted as the total latent heat contribution from oceanic raining clouds to 
the total tropical atmosphere. (Adapted from Stephens et al. 2019) 
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circulation that it drives. They calculated latent heating rates using an approach similar to 
Schumacher et al. (2004) in which heating from convective and stratiform precipitation regions 
was derived from TRMM rainfall rates and heating from lighter shallow precipitation was 
estimated from CloudSat data. While Huaman and Schumacher (2018) discussed all seasons, 
only results for June-July-August (JJA) are shown here (Fig. 5a). They found distinct seasonal 
variability, with the northern ITCZ strongest in JJA, with a low- and high-level heating peak. 
The first six months of the year, in contrast, were characterized by a low-level peak near 800-700 
hPa. Other than March-April-May, the southern ITCZ was associated with shallow heating only, 
with a peak just below 800 hPa. Huaman and Schumacher (2018) also noted that the northern 
ITCZ sloped northward with height due to a predominance of shallow (deep) heating on its 
southern (northern) side. Average latent heating rates in the ITCZ (Fig. 5b) showed considerable 
variability between the different estimates. The two TRMM/GPM standard products (CSH and 
SLH) were reasonably similar, with a top-heavy heating profile peaking near 400 hPa. While the 
Huaman and Schumacher PR-CPR latent heating profile was similar to CSH and SLH above 500 
hPa, it showed a distinct low-level heating peak near 700 hPa associated with the CPR estimates 
of shallow-cloud heating. 

Figure 5. (a) Mean latitude–pressure cross section of latent heating (K day-1) for June-July-
August for 130°–90°W from the CloudSat CPR and TRMM PR. (b) Latent heating profiles 
in the ITCZ (region of precipitation >3 mm day-1) derived from TRMM/CloudSat (black) 
and TRMM PR-based retrievals: CSH (green), SLH (blue), and PRH (red). (c)–(d) Mean 
meridional mass flux vectors (kg m-2s-1) and vertical velocity (Pa s-1; shaded) from (c) 
MERRA-2 and (d) and NCEP-NCAR. The vertical flux component has been amplified 100 
times to account for the aspect ratio of the plot. The maximum heating position at each level 
in (a, c, and d) is indicated by gray dots. (Adapted from Figs. 7 and 8 of Huaman and 
Schumacher 2018, ©American Meteorological Society. Used with permission.) 

a) JJA PR-CPR b) JJA LH

c) JJA MERRA2 d) JJA NCEP
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Huaman and Schumacher (2018) compared the satellite-derived heating rates to vertical motions 
and circulation vectors from several reanalysis data sets (Figs. 5c, 5d). The patterns of vertical 
velocity were consistent with the heating rates, with the largest differences between reanalyses 
occurring in the JJA and September-October-November (SON) timeframes. The deep, top-heavy 
heating profile produced a deep overturning circulation, while the low-level heating peak gave 
rise to a shallow meridional overturning circulation. While not as apparent during JJA, the 
shallow circulation was apparent in the MERRA2 data (southerly flow in the 800-700 hPa layer, 
Fig. 5c), but was absent in the NCEP-NCAR reanalysis (Fig. 5d), which had only weak shallow 
heating. Their results suggest potentially significant issues with the representation of organized 
convection and shallow clouds in global circulation models. 

The latent heat released during cloud condensation and precipitation formation warms the air and 
enhances instability inside clouds in adiabatic conditions that invigorates the storms. Deep 
convective storms are a key source of intense precipitation. The linkage between convection and 
extreme precipitation has been investigated using the precipitation radars of TRMM and DPR 
(Sohn et al. 2013; Gingrey et al. 2018: Kuo et al., 2020; Wang & Tang, 2020). Extreme rainfall 
events were studied by Hamada et al. (2015) using long-term TRMM PR data record. 
Interestingly, they showed that extreme rainfall events associated with deep convective clouds 
tend to not be associated with extremely tall convective systems. This is illustrated in Fig. 6 as a 
statistical difference in vertical profiles of PR-observed radar reflectivity between extreme 
rainfall and convection cases. A remarkable finding is a downward increase of reflectivity below 
8km in the extreme rainfall (“R-only”) case, indicative of a substantial contribution of the warm 
rain process to formation of the extreme rainfall. The extremely tall (“H-only”) case, in contrast, 
is characterized by more vertically aligned structures even with a slight downward decrease of 
reflectivity below the melting level. This difference in occurrences between the extreme rainfall 
and convection cases highlights a critical need for understanding relative roles of microphysical 
and dynamical processes in cloud-precipitation systems. Although the two different aspects (i.e. 
microphysics and dynamics) have started to be linked with some combinations of active and 
passive sensors for a spectrum of shallow to deep convective systems (e.g., Kikuchi & Suzuki, 
2019), their process-level understanding is still generally missing. 
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4.4 Tracking Temporal Evolution 
Strictly speaking, the term “process” means the mechanisms responsible for temporal evolution 
of physical states (as discussed in Section 1). In this sense, the analysis discussed above in this 
section just “probe” processes statistically, rather than readily “seeing” processes, with a lack of 
time dimension in the analysis. This statistical probing processes is mainly due to the limitation 
of low Earth orbiting satellites that sample clouds and precipitation only intermittently at a given 
location and the fact that temporally continuous measurements enabled by recent geostationary 
satellites (e.g., Himawari-8 and GOES-R) have neither cloud nor precipitation radars onboard. 
Despite this limitation, however, there have been several attempts to extract “temporal” 
information of cloud-precipitation system from existing satellite measurements (Wardah et al. 
2008; Fiolleau & Roca, 2013; Letu et al., 2019). One such approach is proposed by Luo et al. 
(2009, 2010) who combined cloud-precipitation states measured by A-Train multi-sensor 
satellites with information on the ambient environment to infer dynamical characteristics of deep 
convective clouds, such as whether a given convective system is “transient” or “terminal” in 
terms of its buoyancy (Luo et al., 2009) and an estimate of the cloud-top buoyancy and 
entrainment rate (Luo et al., 2010). Along with these “indirect” approaches, a more “direct” 
approach to infer cloud-top dynamics is proposed by Luo et al. (2014), who suggested the use of 
A-Train multiple satellite measurements (i.e. Aqua/MODIS and CALIPSO/IIR) with a slight
time lag (~1-2 minutes). They derived convective vertical velocities by taking a difference in
cloud-top temperatures (measured by the IR channels on both satellites) and related them to
cloud internal structures inferred from the CloudSat profiles, thus bringing together cloud
dynamics and cloud microphysics. These A-Train analyses are also combined with geostationary

Figure 6. Vertical profiles of radar reflectivity statistically represented in the form of joint 
histograms of radar reflectivity and height over tropical ocean for extreme rainfall (R-only), 
extreme vertical extent (H-only) and extreme relative humidity (RH) cases. (Cited from 
Hamada et al. 2015.) 
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satellite measurements to put the cloud dynamic characteristics into the context of cloud lifecycle 
(Takahashi & Luo, 2014). 

Such time differences in multiple satellite measurements are also utilized in different and novel 
ways by Masunaga (2012), who analyzed data from multiple satellite platforms that overpass a 
given location at different local times to construct temporal composites of the satellite 
observables, often referred to as “delta-t” measurements, Specifically, Masunaga (2012) 
exploited the temporal gap between TRMM and Aqua satellite overpasses to project their 
measurements onto a composite temporal sequence of, for instance, water vapor mixing ratio as a 
function of relative time prior and subsequent to precipitation occurrence (Fig. 7 left panels), 
depicting temporal evolutions of water vapor profile associated with precipitating convection 
(Fig. 7 right panels). This analysis methodology was then applied to a variety of satellite 
platforms and sensors to investigate thermodynamic evolution of atmospheric phenomena 
relevant to convection and precipitation in the tropics and subtropics over relatively short (hourly 
to daily) time scales (e.g., Masunaga, 2013; Masunaga & Bony, 2018). This work exemplifies a 
promising approach to further advance our understanding of “dynamical” characteristics of 
cloud-precipitation processes, when combined with independent approaches of diagnosing cloud-
top dynamics described above (Luo et al., 2010; 2014) to infer convective and large-scale mass 
fluxes separately (Masunaga & Luo, 2016) and also through being applied to investigation of 
aerosol scavenging by convection (Sauter & L’Ecuyer, 2017; Sauter et al., 2019). These analysis 
approaches readily add the time dimension to satellite observations of cloud-precipitation 
systems and their interactions with aerosols and convection, particularly expected by the 
enhanced capabilities in future missions. 
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5 Future Satellite Missions for Cloud-Precipitation Process Studies 
The next radar mission, the Earth, Clouds, Aerosols and Radiation Explorer (EarthCARE) 
satellite is developed jointly by the European Space Agency (ESA), JAXA and National Institute 
of Information and Communications (NICT). EarthCARE is regarded as a historical successor of 
the vertical cloud and aerosol observations by the A-Train satellites, loading four sensors, (1) 
Cloud Profiling Radar (CPR), (2) Atmospheric Lidar (ATLID), (3) Multispectral Imager (MSI), 
and (4) Broadband Radiometer (BBR), all of which are specifically designed to investigate 
global profiles of cloud, aerosol, and precipitation and associated radiative properties 
(Illingworth et al., 2015). In terms of the precipitating cloud measurement, the EarthCARE CPR 
is expected to be the first space-borne weather radar with a Doppler measurement capability, 
enabling the measurement of vertical motions of hydrometeors globally (Kollias et al. 2014; 
Hagihara et al. 2021). Together with the High Spectral Resolution Lidar (HSRL) of ATLID, the 
measurements will offer novel information, i.e. cloud dynamics and better particle habit 
identifications, to enhance our understanding on the precipitation processes described in previous 
sections particularly for mixed-phase clouds with cold rain processes, which had been 
challenging for previous measurements. In particular, the dynamical information offered by the 
CPR Doppler measurement is expected to add a temporal context to the cloud-precipitation 
vertical measurement achieved by the CloudSat.  

Figure7. (Left) Schematic illustrations of the temporal composite analysis with (a) TRMM 
and Aqua measurements on individual days and (b) their projections onto the composite 
space.  (Right) Temporal sequence of relative humidity anomaly (upper) and vapor mixing 
ratio anomaly (lower) composited with respect to deep convection. (Cited from Masunaga 
2012, ©American Meteorological Society. Used with permission.) 
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With a particular focus in observing storm life cycles, the Time-Resolved Observations of 
Precipitation structure and storm Intensity with a Constellation of Smallsats (TROPICS) was 
selected by NASA as part of the Earth Venture-Instrument (EVI-3) program (Blackwell et al. 
2018). The mission, led by the Massachusetts Institute of Technology/Lincoln Lab, is designed 
to obtain rapid-revisit passive microwave observations of tropical cyclones, with median revisit 
rates of less than 50 minutes. TROPICS is comprised of a constellation of 6 Cubesats, 2 satellites 
in each of three 30°-inclination orbits, each satellite carrying a passive microwave sensor with 7 
channels near 118 GHz for temperature profiling, 3 channels near 183 GHz for moisture 
profiling, and imaging channels at 92 and 205 GHz. Its science objectives are focused on relating 
the evolution of precipitation structure, including convective bursts, to storm intensity change 
and warm-core development, relating environmental moisture to storm structure (including size) 
and intensity, and assessing the impact of the observations on numerical and statistical tropical 
cyclone prediction models. 
Another promising observing system currently under study at NASA is Aerosols, Clouds, 
Convection, and Precipitation (ACCP, to be renamed during mission formulation), representing 
two designated observables identified in the 2017 Earth Science Decadal Survey (National 
Academies of Science, Engineering, and Medicine, 2018). The aerosol designated observable 
focused on vertical profiles of aerosol, and cloud properties, with a candidate payload including a 
backscatter lidar and multi-channel, multi-angle, polarization imaging radiometer. For CCP, the 
science focused on coupled cloud-precipitation properties and dynamics, with a candidate 
measurement approach that includes a possible dual-frequency Doppler radar with a multi-
frequency passive microwave and sub-millimeter radiometer. The overall science objectives of 
ACCP were defined to address diverse research objectives, including low- and high-cloud 
feedbacks; the dynamics of convective storm systems; cold cloud and precipitation processes 
(including snowfall and mixed phase properties); aerosol attribution and air quality; aerosol 
processing, wet removal, and vertical redistribution; aerosol direct effects and absorption; and 
aerosol indirect effects. 

6 Summary 
Over the course of fifty years, satellite passive microwave instruments have provided 
unprecedented measurements for characterizing global precipitation. The measurement was 
essentially initiated by the microwave radiometer of SSM/I, which estimated precipitation using 
the microwave emission and scattering nature of hydrometeors. The successful continuity of 
microwave radiometry – including TRMM TMI, the AMSR series, SSMIS and GPM GMI – 
established them as the backbone of the global precipitation satellite observing system. The first 
microwave radar measurements, acquired late in the 20th century by the TRMM PR, added a 
vertical dimension to the two-dimensional picture provided by the radiometers. Given the 
intrinsic three-dimensional nature of cloud and precipitation systems, the measurements from the 
TRMM, CloudSat and GPM radars accelerated process studies in the satellite community, 
looking deeper into physical mechanisms behind the precipitation observed. Such studies have 
shed light on key processes such as latent heat release, warm rain and convective storm 
processes, and have even explored extracting temporal information from the snapshot 
observations. The “golden era” of satellite observations will be further nurtured by the planned 
EarthCARE mission and A-CCP observing system currently under study, with their enhanced 
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capabilities that will further add a temporal dimension to global precipitation measurements and 
thus deepen our understanding of cloud-precipitation dynamics and their feedback mechanisms. 
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